## Synthesis of 2,4,5-Trisubstituted 3-Fluorofurans via Sequential Iodocyclization and Cross-Coupling of *gem*-Difluorohomopropargyl Alcohols

Satoru Arimitsu, Jesse M. Jacobsen, and Gerald B. Hammond\*

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292

gb.hammond@louisville.edu

Received January 14, 2008



The iodocyclization of *gem*-difluorohomoallenyl and *gem*-difluorohomopropargyl alcohols with  $I_2$  and ICl, respectively, produced the corresponding fluorinated iodofuran analogues in good yields. The iodo substituent in fluorinated 4-io-dofurans was utilized as a synthetic handle to prepare multi-substituted 3-fluorofurans using a Suzuki cross-coupling reaction. The yields of both iodocyclization of *gem*-difluorohomopropargyl alcohol and subsequent Suzuki coupling were dramatically enhanced by microwave irradiation.

The furan structure is a ubiquitous unit in a variety of natural products, active pharmaceuticals, agricultural compounds, fragrances, and synthetic precursors.<sup>1</sup> A concise synthetic methodology for multi-substituted furans remains an important task in modern organic chemistry.<sup>2</sup> A particularly underdeveloped area of furan chemistry is the synthesis of its fluorine congeners,<sup>3</sup> despite the fact that the presence of fluorine has often enhanced the pharmacokinetic properties of a parent molecule and that many current pharmaceuticals contain fluorine(s).<sup>4</sup>

Our group has reported the indium-mediated selective synthesis of *gem*-difluorohomoallenyl alcohol **2** and *gem*-difluorohomopropargyl alcohol **4** from difluoropropargyl bromide **1**.<sup>5</sup> Both alcohols have demonstrated their usefulness as building blocks in the synthesis of fluorinated furan analogues under basic SCHEME 1. Synthetic Access to Fluorinated Furans from Alcohols 2 and 4



conditions (Scheme 1).<sup>6</sup> However, these methodologies use a proton ( $H^+$ ) electrophile, which does not permit installing a synthetic handle to access multi-substituted fluorinated furans. If instead we could use a halide electrophile, we would then be able to install this reactive halide on the furan structure, which could eventually be functionalized by further cross-coupling reactions. We are now pleased to report the synthesis of fluorinated iodofurans and their conversion into 2,4,5-trisubstituted 3-fluorofurans using a Suzuki coupling reaction.

$$\begin{array}{c} \text{TIPS} \\ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

As a point of entry to the ensuing discussions, the iodocyclization of *gem*-difluorohomoallenyl alcohol **2** produced 2,2difluoro-3-iodo-2,5-dihydrofuran **3** under mild conditions (1 equiv). The expected—and observed—iodocyclization pattern<sup>7</sup> was driven by the high electrophilicity of the *gem*-difluorovinyl carbon.<sup>8</sup> In marked contrast, the lesser reactivity of the triple bond in *gem*-difluorohomopropargyl alcohol **4a** hindered its

(6) See refs 3b and 5d.

10.1021/jo800088y CCC: \$40.75 © 2008 American Chemical Society Published on Web 03/08/2008

<sup>(1) (</sup>a) Lipshutz, B. H. *Chem. Rev.* **1986**, 86, 795–819. (b) Dean, F. M. In *Advances in Heterocyclic Chemistry*; Katritzky A. R., Ed.; Academic Press: New York, 1983; Vol. 31, pp 273–344. (c) Nakanishi, K., Goto, T., Ito, S., Natori, S., Nozoe, S., Eds.; *Natural Products Chemistry*; Kodansha: Tokyo, 1974; Vols. 1–3.

<sup>(2) (</sup>a) Babudri, F.; Cicco, S. R.; Farinola, G. M.; Lopez, L. C.; Naso, F.; Pinto, V. *Chem. Commun.* **2007**, 3756–3758. (b) Kirsch, S. F. *Org. Biomol. Chem.* **2006**, *4*, 2076–2080. (c) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. *Eur. J. Org. Chem.* **2005**, *2*, 5277–5288. (d) Stauffer, F.; Neier, R. *Org. Lett.* **2000**, *2*, 3535–3537 and references cited therein.

<sup>(3)</sup> For examples of substituted 3-fluorofurans, see: (a) Pomeisl, K.; Cejka, J.; Kvicala, J.; Paleta, O. *Eur. J. Org. Chem.* **2007**, 5917–5923. (b) Arimitsu, S.; Hammond, G. B. *J. Org. Chem.* **2007**, *72*, 8559–8561. (c) Xu, W.; Chen, Q.-Y. *Org. Biomol. Chem.* **2003**, *1*, 1151–1156. (d) Sham, H. L.; Batebenner, D. A. *J. Chem. Soc., Chem. Commun.* **1991**, 1134– 1135.

<sup>(4)</sup> For general reviews, see: (a) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006. (b) Chambers, R. D. Fluorine in Organic Chemistry; Blackwell: Oxford, 2004 (c) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, Germany, 2004. (d) Koksch, B.; Sewald, N.; Jakubke, H.-D.; Burger, K. Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; American Chemical Society: Washington, DC, 1996. For examples of 3,3-gemdifluoromethylenated nucleoacids, see: (e) Zhou, W.; Gumina, G.; Chong, Y.; Wang, J.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2004, 47, 3399– 3408. (f) Zhang, X.; Xia, H.; Dong, X.; Jin, J.; Meng, W.-D.; Qing, F.-L. J. Org. Chem. 2003, 68, 9026–9033. (g) Patel, V. F.; Hardin, J. N.; Mastro, J. M.; Law, K. L.; Zimmermann, J. L.; Ehlhardt, W. J.; Woodland, J. M.; Starling, J. J. Bioconjugate Chem. 1996, 7, 497–510. (h) Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. J. Org. Chem. 1987, 52, 2406– 2409.

<sup>(5)</sup> For a review of *gem*-difluoroallenes, see: (a) Hammond, G. B. J. *Fluorine Chem.* **2006**, *127*, 476–488. For synthesis of *gem*-difluoro-homopropargyl alcohols, see: (b) Arimitsu, S.; Jacobsen, J. M.; Hammond, G. B. *Tetrahedron Lett.* **2007**, *48*, 1625–1627. (c) Arimitsu, S.; Hammond, G. B. J. Org. Chem. **2006**, *71*, 8865–8868. (d) Kirihara, M.; Takuwa, T.; Takizawa, S.; Momose, T.; Nemoto, H.; *Tetrahedron* **2000**, *56*, 8275–8280. (e) Wang, Z.-G.; Hammond, G. B. J. Org. Chem. **2000**, *65*, 6547–2255.

<sup>(7) (</sup>a) Yoshida, M.; Hayashi, M.; Shishido, K. Org. Lett. **2007**, *9*, 1643–1646. (b) Hyland, C. J. T.; Hegedus, L. S. J. Org. Chem. **2006**, *71*, 8658–8660. (c) Schultz-Fademrecht, C.; Zimmermann, M.; Fröhlich, R.; Hoppe, D. Synlett **2003**, *13*, 1969–1972.

<sup>(8)</sup> Ichikawa, J. Pure Appl. Chem. 2000, 72, 1685-1689.

TABLE 1. Screening Conditions for the Iodocyclization of 4a

| <i>n</i> -Hex |                                 | lodine<br>h Base,<br>Temp     | source<br>Solv., n., Time       | -Hex      | -<br>-<br>-<br>*<br>Ph <i>n</i> -H | lex O Ph                                   |
|---------------|---------------------------------|-------------------------------|---------------------------------|-----------|------------------------------------|--------------------------------------------|
|               | 4a                              |                               |                                 | 5a        |                                    | 6a                                         |
| entry         | base<br>(1.2 equiv)             | iodine<br>source <sup>a</sup> | solvebt<br>(0.1 M)              | temp (°C) | time                               | yields of<br><b>5a/6a</b> (%) <sup>b</sup> |
| 1             | NaH                             | $I_2$                         | THF                             | reflux    | 12 h                               | complex<br>mixture                         |
| 2             | NaH                             | ICI                           | THF                             | reflux    | 12 h                               | 0/36 (6)                                   |
| 3             | t-BuOK                          | ICI                           | THF                             | reflux    | 12 h                               | 0/46 (0)                                   |
| 4             | Na <sub>2</sub> CO <sub>3</sub> | ICI                           | THF                             | reflux    | 12 h                               | 54/0 (37)                                  |
| 5             | K <sub>2</sub> CO <sub>3</sub>  | ICI                           | THF                             | reflux    | 12 h                               | 9/0 (76)                                   |
| $6^d$         | Na <sub>2</sub> CO <sub>3</sub> | ICI                           | THF                             | 91        | 5 min                              | 63/8 (0) [66] <sup>c</sup>                 |
| $7^d$         | Na <sub>2</sub> CO <sub>3</sub> | ICI                           | DMF                             | 91        | 5 min                              | 50/trace (30)                              |
| $8^d$         | Na <sub>2</sub> CO <sub>3</sub> | ICI                           | CH <sub>3</sub> CN              | 91        | 5 min                              | 0/36 (0)                                   |
| $9^d$         | Na <sub>2</sub> CO <sub>3</sub> | ICI                           | CH <sub>2</sub> Cl <sub>2</sub> | 91        | 5 min                              | complex<br>mixture <sup>e</sup>            |
| $10^d$        | Na <sub>2</sub> CO <sub>3</sub> | ICI                           | toluene                         | 91        | 5 min                              | trace/0 (64)                               |
| $11^d$        | Na <sub>2</sub> CO <sub>3</sub> | ICI                           | ether                           | 91        | 5 min                              | 16/23 (13)                                 |

<sup>*a*</sup> 1.5 equiv was used. <sup>*b*</sup> Yield was determined by <sup>19</sup>F NMR, and the values in parentheses refer to the amount of recovered starting material **4a**. <sup>*c*</sup> The value in brackets was the isolated yield of **6a** after silica gel chromatography. <sup>*d*</sup> The reaction was carried out in a closed vial in a microwave reactor. <sup>*e*</sup> **6a** isolated in 12% yield.

 TABLE 2.
 Microwave-Mediated Iodocyclization of gem-Difluorohomopropargyl Alcohol 4

| R                     | F 1) ICI (1<br>Na <sub>2</sub> CO | 1) ICI (1.5 equiv)<br>Na <sub>2</sub> CO <sub>3</sub> (1.2 equiv) I $F$ F |           | I F                                            |  |
|-----------------------|-----------------------------------|---------------------------------------------------------------------------|-----------|------------------------------------------------|--|
| ю́                    | THF (0.                           | 1M), μw, 5 min.                                                           |           |                                                |  |
| 4                     | 2) silica                         | -gel                                                                      | 5         | 6                                              |  |
| entry                 | R                                 | R                                                                         |           | isolated yields<br>of <b>5</b> or <b>6</b> (%) |  |
| 1                     | <i>n</i> -Hex                     | Ph                                                                        |           | 66 ( <b>6a</b> )                               |  |
| 2                     | <i>n</i> -Hex                     | 4-MeC                                                                     | $-C_6H_4$ | 62 ( <b>6b</b> )                               |  |
| 3                     | <i>n</i> -Hex                     | 4-CF3-                                                                    | $-C_6H_4$ | 76 ( <b>6c</b> )                               |  |
| 4                     | <i>n</i> -Hex                     | BnOCH                                                                     | 2         | $46  (5d)^a$                                   |  |
| 5                     | BnOCH <sub>2</sub>                | Ph                                                                        |           | 56 ( <b>5e</b> ) <sup>a</sup>                  |  |
| 6                     | Ph                                | Ph                                                                        |           | 49 ( <b>5f</b> ) <sup>a</sup>                  |  |
| <sup>a</sup> Silica g | el was deactiv                    | ated by Et <sub>3</sub> N.                                                |           |                                                |  |

iodocyclization, as demonstrated by the fact that strong bases, such as NaH and *t*-BuOK, caused the decomposition of product or starting material (entries 1-3, Table 1), and no reaction occurred using K<sub>2</sub>CO<sub>3</sub> and a reactive electrophile (ICI) at reflux temperatures for 12 h (entry 5, Table 1). However, the combination of iodomonochloride (ICI) and Na<sub>2</sub>CO<sub>3</sub> gave the desired iodocyclization product **5a** selectively, in moderate yield and with little decomposition (entry 4, Table 1).

The unreactive nature of **4a** prompted us to investigate whether microwave irradiation would hasten the desired iodocyclization (entries 6-11, Table 1). Gratifyingly, **4a** was quickly consumed to yield **5a** as a major product in satisfactory yield after only 5 min of microwave irradiation. Following silica gel chromatography, the aromatic product **6a** was obtained in 66% yield (entry 6, Table 1).

The scope of this reaction is shown in Table 2. Aryl substrates with electron-donating or -withdrawing groups at the homopropargyl position gave the corresponding 4-iodofuran **6** in good isolated yields (entries 1-3, Table 2). Interestingly, use of silica gel deactivated with triethylamine (Et<sub>3</sub>N) furnished **5** instead of the aromatized derivative **6** (entries 4-6, Table 2).<sup>9</sup>

SCHEME 2. Reaction Mechanism for the Iodocyclization of 4



The published syntheses of 2,5-substituted-3-fluorofurans do not permit functionalization at the 4-position of 3-fluorofurans.<sup>3</sup> Thus, a readily apparent useful synthetic transformation of 5 or 6 could be the replacement of iodine with a suitable substituent using a cross-coupling reaction. An obvious approach would be the Suzuki coupling<sup>10</sup> of arylboronic acids. Indeed, phenylboronic acid reacted with 6a to furnish 7aa in excellent yield in only 0.5 h (entry 1, Table 3). Microwave irradiation proved critical for the efficiency of this reaction since the same reaction at reflux not only failed to consume 6a after 12 h but also led to the formation of byproducts. Electron-rich or electrondeficient aryl boronic acids reacted with 6a in satisfactory yields (entries 2-6, Table 3). Furthermore, 3-thienylboronic acid (entry 7, Table 3) and (E)-cinnamylboronic acid (entry 8, Table 3) gave the corresponding sp<sup>2</sup>-sp<sup>2</sup> coupling products in good and moderate yields, respectively, with only a slight change in the reaction time. Notably, the Suzuki coupling of 5 spontaneously yielded only 7 (entries 11-13, Table 3), with no trace of the corresponding 4,5-dihydrofuran.

The two proposed mechanisms for the iodocyclization of **4** are depicted in Scheme 2. Initial deprotonation of **4** by a base gives rise to an oxyanion, which can then attack either on the CF<sub>2</sub> carbon in a 3-*exo-tet* fashion (Path a, Scheme 2)<sup>11</sup> or on the triple bond in a 5-*endo-dig* fashion (Path b, Scheme 2).<sup>12,13</sup> The conversion of acetylenic epoxide intermediates into furans via their cumulene intermediates, in the presence of bases, has been reported.<sup>14</sup> However, for this transformation to occur, alkyl substrates are required on R. Fortunately, we were able to recrystallize **5f** and obtain an X-ray analysis (Figure 1), which, in turn, allowed us to use the <sup>19</sup>F NMR spectral data of crude **5** (prior to aromatization) to confirm that, in all cases, 3,3-difluoro-4-iodo-4,5-dihydrofuran **5** was produced, regardless of the substrates R and R'. This experimental fact shored up support for Path b as the most likely mechanism for our reaction. The

<sup>(9)</sup> The use of normal silica gel for isolation resulted in the decomposition of the benzyl ether group (entries 4 and 5, Table 2) and a difficult separation from byproducts (entry 6, Table 2).

<sup>(10)</sup> For reviews of the Suzuki–Miyaura cross-coupling, see: (a) Bellina, F.; Carpita, A.; Rossi, R. *Synthesis* **2004**, 2419–2440. (b) Kotha, S.; Lahiri, K.; Kaschinath, D. *Tetrahedron* **2002**, *58*, 9633–9695. (a) Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, *95*, 2457–2483.

<sup>(11)</sup> A similar base-mediated cyclization of *gem*-difluorohomopropargyl alcohol was reported. This report claimed that 3-fluoro-2,5-substituted furans were obtained via a 3-*exo-tet* cyclization. See ref 3d.

<sup>(12)</sup> El-Taeb, G. M. M.; Evans, A. B.; Jones, S.; Knight, D. W. Tetrahedron Lett. 2001, 42, 5945-5948.

<sup>(13)</sup> A cyclic iodonium ion intermediate has been proposed. See: Barluenga, J.; Rodríguez, M. A.; Campos, P. J. J. Org. Chem. **1990**, 55, 3104–3106 and references cited therein.

<sup>(14) (</sup>a) Marshall, J. A.; Dubay, W. J. J. Am. Chem. Soc. **1992**, 114, 1450–1456. (b) Marshall, J. A.; DuBay, W. J. J. Org. Chem. **1991**, 56, 1685–1687.

TABLE 3. Microwave-Mediated Suzuki Coupling of 5 or 6

|       |                    | tuene (0.05 M), R C R'<br>Time 7 |                         |                              |                                   |
|-------|--------------------|----------------------------------|-------------------------|------------------------------|-----------------------------------|
| entry | R                  | R'                               | <b>R</b> <sub>1</sub>   | time <sup><i>a</i></sup> (h) | isolated<br>yield of <b>7</b> (%) |
| 1     | <i>n</i> -Hex      | Ph (6a)                          | Ph                      | 0.5                          | 98 ( <b>7aa</b> )                 |
| 2     | <i>n</i> -Hex      | Ph (6a)                          | $3,4-(OCH_2O)-C_6H_3$   | 0.5                          | 78 ( <b>7ab</b> )                 |
| 3     | <i>n</i> -Hex      | Ph (6a)                          | $4-CHO-C_6H_4$          | 1.5                          | 72 ( <b>7ac</b> )                 |
| 4     | <i>n</i> -Hex      | Ph (6a)                          | $4-CN-C_6H_4$           | 1.0                          | 63 ( <b>7ad</b> )                 |
| 5     | <i>n</i> -Hex      | Ph (6a)                          | $4-F-C_6H_4$            | 0.5                          | 66 ( <b>7ae</b> )                 |
| 6     | <i>n</i> -Hex      | Ph (6a)                          | $4-CF_3-C_6H_4$         | 0.5                          | 63 ( <b>7af</b> )                 |
| 7     | n-Hex              | Ph (6a)                          | 3-thienyl               | 1.0                          | 71 ( <b>7ag</b> )                 |
| 8     | n-Hex              | Ph (6a)                          | (E)-PhCHCH <sub>2</sub> | 1.5                          | 58 ( <b>7ah</b> )                 |
| 9     | n-Hex              | $4 - MeO - C_6H_4$ (6b)          | Ph                      | 2.0                          | 85 ( <b>7ba</b> )                 |
| 10    | <i>n</i> -Hex      | $4-CF_{3}-C_{6}H_{4}$ (6c)       | Ph                      | 1.0                          | 75 ( <b>7ca</b> )                 |
| 11    | <i>n</i> -Hex      | $BnOCH_2$ (5d)                   | Ph                      | 1.5                          | 50 ( <b>7da</b> )                 |
| 12    | BnOCH <sub>2</sub> | Ph ( <b>5e</b> )                 | Ph                      | 1.0                          | 51 ( <b>7ea</b> )                 |
| 13    | Ph                 | Ph ( <b>5f</b> )                 | Ph                      | 1.5                          | 77 ( <b>7fa</b> )                 |



FIGURE 1. Single-crystal X-ray structure of 5f.

electronically deficient nature of the alkyne moiety in **4** had been verified through DFT calculations.<sup>3b</sup>

In summary, whereas the iodocyclization of *gem*-difluorohomoallenyl alcohol **2** produced 2,2-difluoro-3-iodo-2,5-dihydrofuran **3** at low temperature, the iodocyclization of *gem*difluorohomopropargyl alcohol **4** required use of microwave irradiation to yield 3,3-difluoro-4-iodo-4,5-dihydrofurans **5** or 3-fluoro-4-iodofurans **6** in satisfactory yields. This investigation clearly demonstrated that the iodocyclization proceeds via a 5-*endo-dig* mode on the electronically deficient triple bond. Finally, fluorinated 4-iodofuran analogues **5** and **6** were successfully used in the synthesis of fully substituted 3-fluorofurans **7** by microwave-mediated Suzuki coupling.

## **Experimental Section**

2,2-Difluoro-3-iodo-4-triisopropylsilyl-2,5-dihydrofuran (3). To a solution of I<sub>2</sub> (0.55 mmol, 1.1 equiv) and K<sub>2</sub>CO<sub>3</sub> (1.1 mmol, 2.2 equiv) in THF (4.0 mL) was added a solution of difluorohomoallenyl alcohol 2 (0.5 mmol, 1.0 equiv) in THF (1.0 mL) at 0 °C. The resulting mixture was stirred for 0.5 h at 0 °C, then the reaction mixture was quenched by H<sub>2</sub>O (20 mL) and extracted by  $Et_2O$  (10 mL  $\times$  3). The combined organic layer was washed by 5% aqueous solution of saturated sodium bisulfite (10 mL  $\times$  1) and then dried over MgSO<sub>4</sub>. The desired product was isolated by flash silica gel chromatography with hexane as an eluent, after which 3 (116 mg, 60%) was obtained as a white crystal: <sup>1</sup>H NMR  $(CDCl_3) \delta 1.15 \text{ (s, 18H)}, 1.45 \text{ (m, 3H)}, 4.84 \text{ (t, } J = 11.3 \text{ Hz}, 2\text{H});$ <sup>19</sup>F NMR (CDCl<sub>3</sub>) δ -61.18 (s); <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ 11.3, 18.6, 81.9, 92.2 (t, J = 38.0 Hz), 132.2 (t, J = 249.5 Hz), 151.7; IR  $(CCl_4)$  2949, 2870, 1577, 1461, 1348, 1257, 1174 cm<sup>-1</sup>; mp = 33-34 °C; MS m/z (%) 371 (100), 195 (5), 158 (5). Anal. Calcd for C13H23F2IOSi: C, 40.21; H, 5.97. Found: C, 40.49; H, 5.95.

3-Fluoro-5-n-hexyl-4-iodo-2-phenylfuran (6a). An oven-dried microwave vial (10 mL size) fitted with a stir bar, under argon atmosphere, was charged with sodium carbonate (0.6 mmol, 1.2 equiv) into which gem-difluorohomopropargyl alcohol 4a (0.5 mmol) in THF (2.0 mL) was added via syringe. The mixture was stirred vigorously for 10 min before being cooled in an ice bath for 5 min followed by slow addition of iodine monochloride (0.75 mmol, 1.5 equiv) in THF (3.0 mL). The vial was then placed in a CEM Discover microwave synthesizer at 91 °C for 5 min (at 150 W, 250 psi max), and the temperature was monitored by the microwave-attached computer during the reaction. After cooling to room temperature, the reaction was quenched with aqueous sodium bisulfite (12.0 mL, 3/1 = water/saturated sodium bisulfite). The mixture was extracted with ether, and the combined organic extracts were washed with brine and dried over anhydrous MgSO<sub>4</sub>. The organic solvent was carefully removed in vacuo treating with ca. 1.0 g of silica gel to induce aromatization. The resulting powder was placed on top of a silica gel column chromatograph and eluted with hexane to furnish **6a** (122 mg, 66%) as a pale yellow oil:  $^{1}$ H NMR (CDCl<sub>3</sub>) & 0.92-0.94 (m, 3H), 1.36-1.40 (m, 6H), 1.69-1.74 (m, 2H), 2.72 (dt, J = 2.0, 8.0 Hz, 2H), 7.27 (dt, J = 1.5, 6.5Hz, 1H), 7.43 (dt, J = 2.0, 8.5 Hz, 2H), 7.67 (dd, J = 1.5, 7.0 Hz, 2H); <sup>19</sup>F NMR (CDCl<sub>3</sub>)  $\delta$  –159.21 (s, 1F); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ 14.1, 22.5, 27.8, 28.0, 28.6, 31.4, 57.6 (d, *J* = 24.1 Hz), 123.2 (d, *J* = 4.3 Hz), 127.0, 128.6, 128.7, 135.1 (d, *J* = 20.1 Hz), 149.7 (d, J = 253.8 Hz), 154.1 (d, J = 4.8 Hz); IR (neat) 3057, 2927, 2857, 1943, 1872, 1634, 1495, 1417, 1147, 1017, 759 cm<sup>-1</sup>; MS m/z (%) 373 (100, M<sup>+</sup> + H), 372 (14), 302 (44), 246 (3), 176 (6), 106 (9); HRMS (EI) calcd for C<sub>16</sub>H<sub>18</sub>FIO (M<sup>+</sup>) 372.0386, found 372.0375.

3-Fluoro-5-n-hexyl-2,4-diphenylfuran (7aa). An oven-dried microwave vial (10 mL size) fitted with a stir bar under argon atmosphere was charged with Pd(PPh<sub>3</sub>)<sub>4</sub> (0.035 mmol, 10 mol %) and phenylboronic acid (1.4 mmol, 4.0 equiv), into which 3-fluoro-4-iodofuran 6a (0.35 mmol) was added along with EtOH (0.5 M relative to 6a), 0.35 mL of aqueous Na<sub>2</sub>CO<sub>3</sub> (0.2 g/mL), and toluene (0.05 M). The vial was then capped under argon and placed in a CEM Discover microwave synthesizer at 115 °C for 30 min (at 150 W, 250 psi max), and the temperature was monitored by the microwave-attached computer during the reaction. After cooling to room temperature, the reaction mixture was quenched with saturated NH<sub>4</sub>Cl followed by extraction with ether. The combined organic layer was washed with brine and dried over anhydrous MgSO<sub>4</sub>. After evaporation of the solvent, the residue was purified on a silica gel column chromatograph eluted with hexane affording product 7aa as a colorless oil (111 mg, 98% yield): <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.92 (t, J = 7.0 Hz, 3H), 1.31–1.44 (m, 6H), 1.77

(quintet, J = 7.5 Hz, 2H), 2.79 (t, J = 8.0 Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 7.37–7.40 (m, 1H), 7.44–7.48 (m, 6H), 7.76 (d, J = 8.0 Hz, 2H); <sup>19</sup>F NMR (CDCl<sub>3</sub>)  $\delta$  –166.21 (s, 1F); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  4.0 (d, J = 11.6 Hz), 22.5, 27.2 (t, J = 11.5 Hz), 28.2, 28.9, 31.5, 114.8 (d, J = 15.3 Hz), 123.2 (d, J = 16.3 Hz), 126.6 (d, J = 16.4 Hz), 127.2 (d, J = 22.1 Hz), 128.5, 128.7, 129.3 (d, J = 4.8 Hz), 130.2, 134.3 (d, J = 20.3 Hz), 141.2, 147.8 (d, J = 256.0 Hz), 150.1 (d, J = 4.8 Hz); IR (neat) 3058, 2954, 2927, 2856, 1945, 1872, 1802, 1749, 1645, 1499, 1421 cm<sup>-1</sup>; MS m/z (%) 322 (2, M<sup>+</sup>), 254 (71), 233 (3), 205 (2), 106 (6). Anal. Calcd for C<sub>22</sub>H<sub>23</sub>-FO: C, 81.95; H, 7.19. Found: C, 81.91; H, 7.31.

Acknowledgment. The authors are grateful to the National Science Foundation (CHE-0513483) for its financial support, and to Professor T. Ishihara and Dr. T. Konno (Kyoto Institute of Technology) for their help in obtaining HRMS data.

Supporting Information Available: Analytical and spectroscopic data for 6b,6c, 5d–5f, 7ab–7ah, and 7ba–7fa and CIF information for 5f. This material is available free charge via the Internet at http://pubs.acs.org.

JO800088Y